Use of an Autologous Leukocyte and Platelet-Rich Fibrin (L-PRF) Membrane in Post-Avulsion Sites: An Overview of Choukroun’s PRF

Marco Del Corso, DDS, DIU¹ • Michael Toffler, DDS²
David M. Dohan Ehrenfest, DDS, MS, PhD³

Abstract

Choukroun’s Platelet-Rich Fibrin (PRF) can be considered an autologous healing biomaterial, incorporating leucocytes, platelets and a wide range of key healing proteins within a dense fibrin matrix. With its strong fibrin architecture and slow release of growth factors and glycoproteins over several days, this natural bioactive membrane can enhance soft/hard tissues healing while protecting both surgical sites and grafted materials from external aggressions. In this article, we propose an overview of the use of PRF in post-avulsion sockets or defects. PRF can be used as a filling material in avulsion (or extraction) sockets alone or mixed with a bone substitute. Used as a covering membrane for guided bone regeneration (GBR), PRF both protects the grafted material and accelerates wound closure, particularly when contiguous suture of the wound margins is not possible. The range of clinical applications of PRF is wide, but an accurate knowledge of the biomaterial, its biology, efficiency and limits is necessary to optimize its systematic use in daily practice.

KEY WORDS: Platelet rich fibrin, platelet rich plasma, autologous growth factors

¹. Private Practice, Turin, Italy.
². Private Practice, New York, NY, USA.
³. Researcher, Department of Biomaterials, Institute for Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.

The Journal of Implant & Advanced Clinical Dentistry • 27
INTRODUCTION

The research and development of protocols promoting haemostasis and healing is a recurrent issue in all surgical disciplines. Fibrin is the first matrix in all wound healing processes, and the use of fibrin-based surgical additives, mainly fibrin glue, has a long history in oral and maxillofacial surgery. The evolution of these techniques resulted in the development of autologous fibrin glues and, since platelets contain a large amount of fibrinogen (the precursor of fibrin), to the concept of platelet concentrate for surgical use. Whitman et al. first described the use of these platelet gels. Since the report by Marx et al., these products have been referred to as platelet-rich plasma (PRP), like the transfusional platelet concentrates from blood banks. Most authors refer to these products as a source of autologous growth factors. Unfortunately, the passion for growth factors has lead to an underestimation of the function of leukocyte content and fibrin architecture in the healing equation.

Since these early publications, a variety of autologous platelet concentrate techniques and devices have been developed, marketed and tested in a large number of clinical situations. In periodontal, implant and maxillofacial surgery, platelet concentrates were first used for their release of growth factors to stimulate the healing process. However, the clinical benefit is difficult to evaluate, and the literature is quite controversial on the subject. This is mainly due to the large number of techniques available, and to the absence of clear classification of the different products. Moreover, the PRP’s were both expensive and time consuming protocols and their development in private practice remains quite limited. In 2001, a new protocol was suggested in France by Choukroun et al. to concentrate platelets and fibrin in a simpler way without blood modification: Platelet-Rich Fibrin (PRF).

DEFINITION OF PRF

PRF can be considered as an autologous healing biomaterial, incorporating in a matrix of autologous fibrin most leukocytes, platelets and growth factors harvested from a simple blood sample. At the present time, the PRF protocol is both the most simple and inexpensive way to produce a platelet concentrate. The blood sample is drawn from the patient at the time of the surgical procedure and is treated with a single centrifugation, with a specific centrifuge (figure 1) and collection kit (Process, Nice, France), without blood manipulation: no anticoagulant during blood collection and no bovine thrombin or calcium chloride for fibrin polymerization. At the end of the centrifugation process, three distinct fractions are produced: 1) at the bottom of the tube, red cells are concentrated (and easily discarded); 2) the superficial layer is a liquid serum called platelet-poor plasma; 3) the intermediate fraction is a dense PRF clot, which can then be used clinically in the form of a membrane. The protocol requires a special tool (PRF box, Process, Nice, France) to prepare standardized membranes and to harvest PRF exudate, in a sterile environment (figures 2, 3).

Both PRF exudate and platelet-poor plasma contain significant amounts of growth factors (Transforming Growth Factors TGFβ-1, Platelet-Derived Growth Factors PDGF-AB, Vascular Endothelial Growth Factors VEGF, etc) and matrix glycoproteins, particularly fibronectin and vitronectin. Fibronectin and vitronectin are two key proteins for cell-matrix contact; therefore,
using this exudate for biomaterial impregnation may be beneficial. With the PRF Box9, PRF fibrin membranes are obtained with consistent size and thickness (figure 3). This tool is essential to guarantee objective and reproducible results.15

The PRF fibrin membrane is more elastic and consistent than the fibrin bulk sometimes obtained with some PRP protocols. PRP’s are enhanced fibrin glues, and PRF is a true fibrin-based biomaterial8 which may be employed in many clinical situations.16–18 For example, its elasticity allows it to function as a sutureable membrane. This biomaterial is both very easy and inexpensive to produce; therefore, its systematic use during oral and maxillofacial surgery must be considered a relevant clinical option. Moreover, it is completely autologous, so there is no ethical limitation or toxicity concerns related to this natural optimized blood clot.14

PRF: AN AUTOLOGOUS BIOACTIVE MEMBRANE

Recently, a global classification of platelet concentrates was published, and these products are now classified in 4 families related to their leucocytes and fibrin contents.8 Choukroun’s PRF is currently the sole product in the L-PRF class (Leukocyte and Platelet-Rich Fibrin), with both high leukocyte content and strong fibrin architecture. In addition, PRF membranes release high amounts of growth factors such as TGF\textbeta1, PDGF-AB, VEGF and matrix glycoproteins (such as thrombospondin-1) during 7 days \textit{in vitro}.19 The fibrin matrix with its intrinsic factors and leukocyte content contains the key ingredients for an enhanced healing of superficial
and bone tissues, particularly through the stimulation of neoangiogenesis. It was recently demonstrated in vitro that PRF enhances proliferation of many different cell types such as fibroblasts, osteoblasts, adipocytes, and keratinocytes. PRF also stimulates osteoblastic differentiation. The influence of leukocytes was already pointed out in this study, as these cells are true regulation turntables and produce large amounts of VEGF involved in angiogenesis. The PRF fibrin matrix as a filling biomaterial has produced consistently favorable clinical results. PRF, as an optimized blood clot, has also been shown to be a very efficient osteoconductive material in sinus-lifts.

The PRF protocol is finally a way to transform a natural blood clot into a clinically usable bioactive membrane. The synergistic effects of the fibrin matrix and its growth factor content lead to a natural and enhanced healing of soft and hard tissues. The platelet and leukocyte cytokines are gradually released during fibrin matrix physiological resorption, and matrix glycoproteins allow quick cell migration and proliferation within the PRF tissue-like architecture. This gradual release of cytokines appears to play a regulatory role in the inflammatory phenomena within the wounded tissues. However, the mechanical function of PRF must also be considered since the PRF membranes allow early wound protection and aid in primary soft tissue closure. This technique, which mimics the natural coagulation process, produces an inexpensive and simple bioactive membrane. Many researchers have tried to develop such membranes in artificial ways by incorporating growth factors in collagen membranes for example. This simple PRF technique produces the most natural bioactive product currently available.

USING PRF IN DAILY PRACTICE FOR POST-AVLUSION SITES

The management of avulsion or extraction sites is a daily issue since bone resorption following tooth removal can compromise both implantation and aesthetic results. For this reason, it is often recommended to insert a filling material inside the residual avulsion socket to maintain adequate bone volume. Many bone substitutes function primarily as a space-maintainer. However, these materials are often quite slow to resorb and remodel, and their use often delays the vascularization and bone regeneration at the site. In addition, the management of soft tissue over the graft requires flap release, extensive dissection, and vertical incisions in order to cover the grafted volume, reducing microvascularization at the margins. Used in this indication, PRF acts in the following ways as an optimized blood clot to enhance the natural healing process:

As a filling material in avulsion sockets, PRF will act as a stable blood clot for neovascularisation and an accelerated tissue reconstruction (figures 4-8), particularly in infected sites or in patients with medical conditions that may delay healing (e.g., diabetes, immunosuppression). PRF stimulates both coagulation (with thrombospondin-1) and wound closure, making it a useful adjuvant in patients under anticoagulant therapies.

As a membrane for guided bone regeneration (GBR), the PRF dense matrix architecture covers, protects, and stabilizes the bone graft material and the operative site in general. Particularly, the elasticity and strength of the PRF fibrin membrane makes it easy to suture. When the socket is too wide for primary closure, the PRF fibrin matrix can be used as a covering and protective membrane that promotes re-
epithelialization of the site and accelerates the merging of the gingival margins (figures 9-22). However, in such circumstances, several PRF layers are required to adequately protect the grafted material and achieve the desired effect.

The mechanisms of these 2 common applications are in fact similar. Epithelial and connective tissue healing on PRF membranes is related both to the growth factors and the fibrin matrix. Gingival fibroblasts easily migrate into this matrix and remodel it. The acceleration of the healing process makes the surgical site less sensitive to
aggressions (mechanical, bacterial and chemical) and thus positively influences both the aesthetic result and postoperative sensitivity. At a deeper level, PRF increases the cohesion between the graft materials as fibrin acts as a physiological glue between wounded tissues. Natural blood coagulation leads to the formation of a fibrin matrix that biologically links wounded tissues together allowing cell proliferation, cell migration, neomatrix apposition and remodelling. Therefore, the combination of PRF with different kinds of filling materials should improve the integration of the grafted material, since PRF is an optimized blood clot.25

However, even though these mechanisms are quite well known, the ideal application of PRF must still be accurately defined.15 The filling of avulsion sockets with PRF leads to very favourable results when the bony walls are intact. A combina-
Figure 13: PRF membrane used to cover graft.

Figure 14: Closure of surgical site with some PRF membrane exposed.

Figure 15: Healing at 3 months post-op.

Figure 16: Final implant supported prosthesis.

Figure 17: Pre-op view of hopeless tooth #30.

Figure 18: Resulting periodontal defect following removal of tooth #30.
tion of PRF with bone substitutes and other adjuvants may be necessary in residual defects where one or several walls are missing or damaged in order to predictably provide an adequate reconstitution of bone volume.17,18,29 In all cases, the systematic use of PRF leads, in our experience, to optimized gingival and bone regeneration which is particularly useful in implant site development.

CONCLUSIONS

The clinical benefits for the systematic use of PRF in daily practice are many. Inexpensive and simple to handle, this technique leads to the production of a large quantity of bioactive autologous membranes with a powerful healing potential on both soft and hard tissues. Its range of clinical applications in oral and maxillofacial surgery is wide; as a filling material or protective membrane, and often as both. Used as a covering membrane, PRF accelerates healing and closure of the wound margins, stabilizes graft materials, and protects the surgical site from external aggressions. It generally provides a perceptible reduction in superficial tissue healing time, and patients often declare reduced postoperative pain. Mixed with graft material,
PRF will serve as biological cement between the particles and enhance neoangiogenesis and bone regeneration, particularly in stimulating osteoblastic proliferation and differentiation. However, this material is only an optimized and usable blood clot. Its potential applications are broad, but an accurate working knowledge of the biomaterial, its biology, efficiency and limits are necessary to optimize its use in daily practice. Therefore, additional studies evaluating the use and performance of PRF are warranted.

Correspondence:
David M. Dohan Ehrenfest
Department of Biomatierals,
Institute for Clinical Sciences,
The Sahlgrenska Academy at
University of Gothenburg,
Medicinaregatan 8B, 41390
Gothenburg, Sweden
e-mail: LoB5@mac.com

Disclosure
The authors report no conflict of interest with any products mentioned in this article.

References
PRF Platelet Rich Fibrin

- Leucocyte an Platelet Rich Fibrin Biomaterial
- Slow release of growth factors: > 7 days
- Automatic production of Fibrin Membranes rich in growth factors with the "PRF Box"
- The more easy and inexpensive system: < 1$ for each membrane!
- Physiological acceleration of hard and soft tissue healing

PC 02

Process, 49 rue Gioffredo - 06000 Nice - FRANCE
Phone +33 (0)4 93 85 58 90 - Fax +33 (0)957 333 256
www.prf-process.com
We invite you to the
THE ORIGINAL, PATENTED AND PROVEN DEVICE FOR PIEZOELECTRIC BONE SURGERY!

EVIDENCE BASED
12 Years Successful Clinical Research • 30+ US & International Patents
50+ Surgical Insert Tips • 80+ Published Articles & Studies

Experience Piezosurgery®-schedule an appointment or in-office demo now!

CALL TODAY - 1.888.877.4396
www.piezosurgery.us